Engineered valves for isolation, protection & process control
A proven track record
Weir has extensive references and a proven track record in the supply of valves across a number of key industries.

Our valves are industry renowned brands, each with an established reputation for quality engineering and reliability.

Valve testing
All pressure containing items are hydrostatically tested, seat leakage tested and functionally tested.

We can also perform gas, packing emission, cryogenic and advanced functional testing, as well as seismic testing for nuclear applications.

Material testing
- Non-destructive examination by radiography, ultrasonics, magnetic particle and liquid penetrant.
- Chemical analysis by computer controlled direct reading emission spectrometer.
- Mechanical testing for tensile properties at ambient and elevated temperatures, bend and hardness testing. Charpy testing at ambient, elevated and sub-zero temperatures.

Aftermarket solutions
Our valve aftermarket solutions are based on our engineering heritage, applying our OEM knowledge and expertise to maintenance strategies, life extensions and upgrade projects.

Quality assurance
Weir is qualified to industry standards and working practices including:
- ASME BPVC Section III (N and NPT Stamp)
- ASME BPVC Section VIII (UV Stamp)
- NQA-1 Quality system
- 10CFR50 App. B
- 10CFR21
- RCC-E
- RCC-M
- CSA Z299
- OTT 87
- Performance testing and qualification to:
 - ASME QME-1
 - ASME B16.41
 - IEEE 323
 - IEEE 344
 - IEEE 382
 - ISO 9001:2008
 - ISO 14001
 - ISO 17025
 - PED 97/23/CE
 - API Q1 TO API LICENCES:
 - API 6D (6D-0182)
 - API 6A (64-0445)
 - TUV-AD MERKBLATT WRD HP 0
 - ATEX 94/9/CE
 - Lean manufacturing practices
Health, safety and the environment

The Weir Group’s policy on health and safety requires that all our companies take a proactive responsible attitude to the protection of their employees’ health and safety. The driving force behind our performance continues to be our emphasis on behaviour, networking and sharing of best practice, and the active involvement of senior management to promote and audit safety programmes.

All our locations fully integrate environmental management into their operational systems and procedures. Weir’s proactive approach ensures that these processes reduce our environmental impact year on year.

TRICENTRIC®

Triple offset butterfly valves

Industries
- Power: Nuclear
- Power: Conventional
- Oil & Gas
- Petrochemicals
- Desalination

Applications
- Isolation & control
- High temperature
- Cryogenics
- Extraction steam isolation
- Oil & Gas isolation & control
- Nuclear containment
- Service water
- Condensate
- Circulating water

Features
- Triple offset metal seat design
- Long life seats
- Bi-directional tight sealing
- API 598 - Zero leakage

Design standard
ASME B16.34, ASME Section III

Pressure classes
ASME 150 - 600

Sizes
3” - 60” (80mm - 1500mm)

Materials
Cast carbon, alloy or stainless steel, AL6XN

Body type
Wafer, Lugged, Flanged
BATLEY VALVE®

Anti-cavitation disc

Industries
- Power
- Oil & Gas
- Petrochemicals
- Desalination

Applications
- Brine blowdown control
- Overboard dump
- Firewater ring main

Features
- Swing through or Hyperseal designs
- Anti-cavitation cowel to prevent cavitation at reduced valve openings
- Can be fitted with a downstream baffle to aid cavitation control

Design standard
- ASME B16.34

Pressure classes
- ASME 150 - 2500

Sizes
- 4” - 64” (100mm - 1600mm)

Materials
- Carbon steels, alloy steels, stainless steels, titanium, copper & nickel alloys

Body type
- Wafer, Lugged, Double Flanged

BATLEY VALVE®

Steadseal

Industries
- Power
- Oil & Gas
- Water treatment

Applications
- Coke oven gas
- Seawater coolant
- Discharge isolation

Features
- Low cost option for low temperature water sealing
- Rubber seal located on the valve disc
- Single & double offset shaft design

Design standard
- ASME B16.34

Pressure classes
- ASME 150 - 600

Sizes
- 6” - 80” (150mm - 2000mm)

Materials
- Carbon steels, alloy steels, stainless steels, titanium, copper & nickel alloys

Body type
- Wafer, Lugged, Flanged, Butt Welded

Engineered valves for isolation, protection & process control

www.weirpowerindustrial.com
BATLEY VALVE®

Hyperseal/Metalseal

Industries
- Power
- Oil & Gas
- Petrochemicals
- Desalination

Applications
- Geothermal systems
- Brine control
- LNG/Cryogenics

Features
- Single & double offset shaft design
- Seal clamped into valve body
- Resilient seated, metal seated, firesafe & swingthrough options
- Used for temperatures up to 220°C in Hyperseal design, 900°C in Metalseal design

Design standard
ASME B16.34

Pressure classes
ASME 150 - 900

Sizes
3” - 64” (80mm - 1600mm)

Materials
Carbon steels, alloy steels, stainless steels, titanium, copper & nickel alloys

Body type
Wafer, Lugged, Flanged, Butt Welded

BATLEY VALVE®

Rubber lined

Industries
- Power
- Oil & Gas
- Petrochemicals
- Desalination

Applications
- Cooling water isolation
- Flue gas isolation
- Jetty loading

Features
- Designed as a low cost solution for controlling low temperature corrosive fluids
- Body & shaft material are fully isolated from the process fluid
- Suitable for isolation & control
- Fully bonded rubber lining to allow for higher velocity & pressure differentials

Design standard
ASME B16.34

Pressure classes
ASME 150 - 300

Sizes
3” - 64” (80mm - 1600mm)

Materials
Carbon steels, alloy steels, stainless steels, titanium, copper & nickel alloys

Body type
Wafer, Lugged, Flanged, Clamped

www.weirpowerindustrial.com

Engineered valves for isolation, protection & process control
Control and choke valves - High performance and reliability

WEIR CONTROL & CHOKE VALVES
General service control valves

Industries
- Power
- Oil & Gas
- Petrochemicals
- Desalination

Applications
- General service control
- Power station control applications
- Oil & Gas control applications
- Arduous service
- Cryogenics

Features
- Single & multi-stage pressure drop
- Severe service trims
- Cage valves are used to reduce/eliminate the effects of cavitation/flashing/noise

Design standard
ASME Section III, ASME B16.34, RCC-M

Pressure classes
ASME 150 - 4500

Sizes
½” - 36” (15mm - 900mm)

Materials
Carbon steels, alloy steels, stainless or any other specified materials

WEIR CONTROL & CHOKE VALVES
X-Stream® severe service control valves

Industries
- Power
- Oil & Gas
- Petrochemicals

Applications
- Severe service application
- High pressure letdown
- Cavitation control
- Noise control

Features
- Designed to handle high pressure drops
- Elimination of noise
- Flow path designed to prevent blockage through flow contamination
- Patented trim
- Trim exit velocity control

Design standard
ASME B16.34

Pressure classes
ASME 150 - 4500

Sizes
3” - 36” (80mm - 900mm)

Materials
Any commercially available steel
WEIR CONTROL & CHOKE VALVES

Choke valves

Industries
- Oil & Gas

Applications
- Used on severe service choke applications
- Production systems
- Gas lift application
- Injection

Features
- Erosion prevention due to special flow paths & hardened materials
- Individual design to suit the specific application
- Bi-directional

Design standard
ASME B16.34 &/or API ratings

Pressure classes
ASME 150, 300, 1500 & 4500
API 3000, 5000, 10000 & 15000

Sizes
1” - 16” (25mm - 400mm)

Materials
High grade cast or forged, usually 60k material

WEIR CONTROL & CHOKE VALVES

Desuperheaters

Industries
- Power
- Process gas

Applications
- Combined pressure & temperature control
- Steam temperature control
- Cryogenic temperature control

Features
- Superior atomisation through multi-nozzle injection
- High rangeability
- Can be supplied as a combined unit for pressure/temperature control

Design standard
ASME B16.34

Pressure classes
ASME 150 - 2500

Sizes
1” - 36” (25mm - 900mm)

Materials
Cast carbon, alloy or stainless steel

www.weirpowerindustrial.com
Pressure safety valves - Overpressure and protection solutions

SEBIM™

Pilot operated safety relief valves for nuclear

Industries
- Power: Nuclear
- Submarines: Nuclear

Applications
- All nuclear reactor types
- High & low pressure overpressure protection
- Steam generator safety valves
- Main steam safety valves
- Other nuclear reactor applications

Features
- Excellent stability across steam, gas, liquid & two-phase conditions
- Proven & accurate repeatability & reliability
- Reduced maintenance
- Leak tightness up to the set pressure
- Accuracy better than 1%
- Low or high pressure in-situ testing during operation
- Option of remote opening/closing

Design standard
RCC-M, ASME Section III, NP-068-05, OTT 87

Pressure classes
ASME 150 - 2500 or customised

Sizes
½” - 34” (DN15 - DN850)

Materials
Cast or forged stainless steel or carbon steel - special material on request

SARASIN-RSBD™

Atmospheric relief valves

Industries
- Power

Applications
- Condenser equipment

Features
- Elastomer or plastic seat

Design standard
ASME B16.34

Pressure classes
ASME 150

Sizes
6” - 12” (150mm - 750mm)

Materials
Cast carbon

Body type
Flanged

Nuclear pressuriser safety relief valve
Pressure safety valves - Overpressure and protection solutions

SARASIN-RSBD™
Spring loaded safety relief valves

Industries
- Oil & Gas
- Petrochemicals
- Power: Nuclear
- Power: Conventional
- General industry

Applications
- Oil & Gas processes
- LNG processes
- Steam processes

Features
- Full lift
- Semi or full nozzle design
- Metal of soft seat
- Cast or forged body

Design standard
ASME Section VIII, API STD 526, ASME B16.34, ISO 4126

Pressure classes
ASME 150 - 2500

Sizes
½" - 12" (15mm - 300mm)

Materials
Carbon, alloy or stainless steel

Body type
Flanged, Threaded, Welded

SARASIN-RSBD™
Spring loaded safety relief valves

Industries
- Power: Nuclear
- Power: Conventional
- Petrochemicals

Applications
- Boiler
- Steam utility

Features
- Operating pressure up to 95% of the set pressure
- Side rods design allows ease of maintenance
- Electronic valve tester adaptor on the rod flange

Design standard
ASME Section I & VIII, ASME B16.34, ISO 4126

Pressure classes
ASME 150 - 4500

Sizes
1" - 10" (25mm - 250mm)

Materials
Cast carbon, alloy or stainless steel

Body type
Flanged, Welded
SARASIN-RSBD™
Pilot operated safety relief valves

Industries
- Oil & Gas
- Petrochemicals
- Power: Conventional
- General industry

Applications
- Oil & Gas processes
- LNG processes
- Steam processes

Features
- Semi or full nozzle design
- Metal of soft seat
- Cast or forged body
- Non-flowing pop or modulating action
- Operating pressure up to 95% of the set pressure
- Available from ½” for small flow or remote control discharge valve

Design standard
ASME Section VIII, API STD 526
ASME B16.34, ISO 4126

Pressure classes
ASME 150 - 2500

Sizes
½” - 12” (15mm - 300mm)

Materials
Carbon, alloy or stainless steel

Body type
Flanged, Threaded, Welded

SARASIN-RSBD™
Pilot operated safety relief valves

Industries
- Power: Conventional
- Oil & Gas
- Petrochemicals

Applications
- Oil & Gas processes
- Steam processes

Features
- Full metal design (no elastomer) for very high temperatures
- Up to 180 barg of steam
- Industrial application of nuclear design (very safe)
- Non-flowing pop action

Design standard
ASME Section VIII, API STD 526
ASME B16.34, ISO 4126

Pressure classes
ASME 150 - 2500

Sizes
1” - 8” (25mm - 200mm)

Materials
Cast carbon, alloy or stainless steel

Body type
Flanged, Welded
SARASIN-RSBD™

Changeover valves

Industries
- Oil & Gas
- Petrochemicals
- Power: Conventional
- General industry

Applications
- Process equipment overpressure protection
- Process piping overpressure protection
- Gas storage overpressure protection

Features
- Standard or low pressure loss design
- Cast or forged body

Design standard
- ASME B16.34

Pressure classes
- ASME 150 - 2500

Sizes
- ½” - 10” (15mm - 250mm)

Materials
- Carbon, alloy or stainless steel

Body type
- Flanged

SARASIN-RSBD™

Tank blanketing valves

Industries
- Oil & Gas
- Petrochemicals

Applications
- Storage tanks

Features
- Product protects inside the storage chamber

Design standard
- ASME B16.34

Pressure classes
- ASME 150

Sizes
- ½” & 1” (15mm & 25mm)

Materials
- Stainless steel

Body type
- Flanged, Threaded
Check valves - Exceptional protection from flow reversal

ATWOOD & MORRILL™

Free Flow™ reverse current valves

Industries
- Power generation

Applications
- Steam turbine protection
- Extraction steam non-return
- Bleeder trip & bled steam non-return

Features
- Free swinging disc allows independent movement of the disc with assured closure upon loss or reversal of flow
- Inclined seat design optimises performance with low pressure drop & fast closure
- Self-aligning disc & disc arm assures repeatable tight sealing

Design standard
ASME B16.34

Pressure classes
ASME 150 - 1500

Sizes
3” - 44” (80mm - 1100mm)

Materials
Carbon steel, alloy steel or stainless steel

ATWOOD & MORRILL™

Boiler feed check valves

Industries
- Power generation

Applications
- Boiler feed pump discharge
- Condensate pump discharge
- Heater drains
- Main steam
- High pressure feedwater

Features
- “Double protection” including positive closure & power assisted closure
- Streamlined flow design minimises pressure drop
- Fast closing design minimises water hammer

Design standard
ASME B16.34

Pressure classes
ASME 900 - 2500

Sizes
4” - 24” (100mm - 600mm)

Materials
Cast carbon, alloy or stainless steel
ATWOOD & MORRILL™
Compressor check valves

Industries
- Refineries & petrochemical plants

Applications
- Fluid catalytic cracking air blower discharge
- Compressor discharge & process application
- Fluids: Hydrocarbon (cracked gas), Ethylene, Propylene, other process fluids

Features
- Tight sealing pressure
- Low pressure drop
- Power assisted
- Quick closure

Design standard
ASME B16.34

Pressure classes
ASME 150 & 300

Sizes
8” - 72” (200mm - 1800mm)

Materials
Cast carbon, alloy or stainless steel

HOPKINSONS®
Feed heater bypass valves

Industries
- Power: Nuclear
- Power: Conventional

Application
- Automatically open to maintain feed flow if the feed heater has to be isolated during fault conditions

Features
- Recognised industry standard for extraction steam turbine protection
- Positive, tight seating, fast closure, low pressure drop

Design standard
ASME B16.34

Pressure classes
ASME 900 - 2500 (Equivalent metric ratings)

Sizes
1” - 36” (25mm - 900mm)

Materials
Cast carbon, alloy or stainless steel
ATWOOD & MORRILL™
Wye globe valves

Industries
- Power: Nuclear
- Power: Conventional
- Refining & petrochemicals

Applications
- Boiler feedwater pump
- Nuclear isolation
- Economiser inlet & stop
- Feedwater heater isolation
- Main steam stop & non-return
- Main steam isolation

Features
- Optimum performance under a wide range of operating conditions & environments
- Y pattern for lower pressure loss
- Bevelled seats for tight seating
- Large seat bore for reduced pressure drop
- Patented thermal compensation device relieves the thrust load built up in the valve stem as the internal temperature rises
- Prevents failure of valve stem, actuator or both

Design standard
ASME B16.34

Pressure classes
ASME 900 - 2500

Sizes
6” - 24” (150mm - 600mm)

Materials
Cast carbon, alloy or stainless steel

ATWOOD & MORRILL™
3-Way valves

Industries
- Power generation

Applications
- High pressure feedwater heater bypass
- Low pressure feedwater heater bypass
- Dual safety valve installations
- Continuous process
- HRSG Economiser

Features
- Allows two different flow patterns from the same valve
- Simplifies piping layout
- Eliminates one motor operator connection
- Significant installation & maintenance cost savings

Design standard
ASME B16.34

Pressure classes
ASME 150, 300, 1500 & 2500

Sizes
6” - 24” (150 - 600mm)

Materials
Cast carbon, alloy or stainless steel

3-Way bypass valve
HOPKINSONS®

Globe valves

Industries
- Power
- Oil & Gas
- Petrochemicals

Applications
- Boiler feedwater pump
- Economiser inlet & stop
- Feedwater heater isolation
- Main steam stop & non-return
- Main steam isolation

Features
- Simplicity of construction
- Flanged, socket & butt weld
- Bonnetless design on sizes up to 2” (50mm)
- Pressure seal cover joints for higher pressures

Design standard
ASME B16.34

Pressure classes
ASME 150 - 4500

Sizes
½” - 2” (15mm - 50mm)

Materials
Cast carbon, alloy or stainless steel

HOPKINSONS®

Drain valves

Industries
- Power: Nuclear
- Power: Conventional

Applications
- Power station drain systems

Features
- Floating ball design
- Stem can be re-packed in-situ
- Stem is one piece construction
- Resistant to high superheat temperatures

Design standard
ASME B16.34

Pressure classes
ASME 900 - 3100

Sizes
½” - 2” (15mm - 50mm)

Materials
Cast carbon, alloy or stainless steel

Hopkinson’s globe valve

High performance martyr drain valve
HOPKINSONS®
Parallel slide isolation valves

Industries
- Power: Nuclear
- Power: Conventional
- Petrochemicals

Applications
- Power station drain systems
- General purpose stop valve
- Main steam & feedwater isolation
- Feedwater heater protection
- Feed pump leak-off

Features
- Isolation without thermal binding
- Bi-directional operation
- Position seated - stops on limit not torque
- Wide, flat seating surface
- Minimum pressure drop across the valve

Design standard
ASME Section III, ASME B16.34, RCC-M

Pressure classes
ASME 150 - 4500

Sizes
½” - 36” (15mm - 900mm)

Materials
Carbon steels, alloy or stainless steel

MAC VALVE®
Rotary gate valves

Industries
- Oil & Gas - Subsea

Applications
- Control of MEG dosage

Features
- Adaptable for isolation, chemical injection & control/choke throttling
- No displaced volume or cavity: valve does not block due to debris or hydrates
- Straight through design: no bends to cause flow instability
- Gate design means increased capacity
- Valve is a sealed unit with virtually no atmospheric leakage
- Virtually zero hysteresis

Pressure classes
API 3000, 5000, 10000 & 15000

Sizes
1” - 6” (25mm - 150mm)

Materials
Any commercially available steel
Our valve and aftermarket solutions are based on our OEM engineering and design heritage. Because of our OEM expertise, we have complete working knowledge of valve design and operation - as well as a full system understanding. This enables us to provide the optimum level of service based on the current condition of your valve, with the know-how to work on our own and other OEM equipment.

Our valve aftermarket services include:
- Outage and shutdown management
- Control valve service solutions
- In-situ valve seat replacement
- Actuation service solutions
- Online safety valve testing and analysis
- Diagnostic testing
- Spare parts support
- Customised training

The core of any effective valve service program is the skill and experience of the technicians and supervisors who come to your site

Benefits
- Extensive references and proven track record
- Detailed and full system understanding
- Reliability-centred maintenance
- Up-to-date nuclear security badging for Weir valve technicians

Weir provides replacement Autotork® & Hopkinson® actuators
Product applications

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Acid service</th>
<th>Chemical processing</th>
<th>Corrosive gases</th>
<th>Cryogenic</th>
<th>Fire protection</th>
<th>Gas pressure</th>
<th>Marine/seawater</th>
<th>Nuclear</th>
<th>Oil & Gas</th>
<th>Petrochemical</th>
<th>Pharmaceuticals</th>
<th>Power generation</th>
<th>Sewage/water treatment</th>
<th>Steam pressure</th>
<th>Subsea</th>
<th>Special application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triple offset butterfly valve</td>
<td></td>
</tr>
<tr>
<td>Isolation butterfly valve</td>
<td></td>
</tr>
<tr>
<td>Control butterfly valve</td>
<td></td>
</tr>
<tr>
<td>Globe angle control valve</td>
<td></td>
</tr>
<tr>
<td>Choke valve</td>
<td></td>
</tr>
<tr>
<td>Desuperheater valve</td>
<td></td>
</tr>
<tr>
<td>Nuclear pilot operated safety relief valve</td>
<td></td>
</tr>
<tr>
<td>Pilot operated safety relief valve</td>
<td></td>
</tr>
<tr>
<td>Spring loaded safety relief valve</td>
<td></td>
</tr>
<tr>
<td>Power operated check valve</td>
<td></td>
</tr>
<tr>
<td>Swing check valve</td>
<td></td>
</tr>
<tr>
<td>Globe valve</td>
<td></td>
</tr>
<tr>
<td>Parallel slide gate valve</td>
<td></td>
</tr>
<tr>
<td>Rotary gate valve</td>
<td></td>
</tr>
</tbody>
</table>